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1. Let f € L! (R). We need to show that £ defined by &(g) = [ f(2)g(x)dx
for any g € C>°(R) is adistribution. Linearity is clear by the elementary prop-
erties of the integral, thus it remains to be shown that for g,,g € C°(R) such

that g, converge to g (in the sense defined in class) we have:

o) = [ @m@de &) = [ j@gts

This Follows from the dominated convergence theorem: indeed, we have
pointwise convergence, and for n sufficiently large | f(z)g.(x) |<| f(z)(] g(x) |
+1(—n,a1) |(where M is large enough that [—M, M] contatins the support of
Jn,g) ,which is integrable.

2. Let U1,U; C R be open sets and let g € C°(U;UU,) . Let K C U UUs be
the (compact) support of g. We claim that one can find compact setsK; C Uy,
K5 C Us such that K C K7 U K5. Indeed, Uy, Us are open so for every point in
K one can find a neighborhood whose (compact) closure is contained in either
U,or U, (by taking any open neighborhood and shrinking it). By compatness
one can then take a finite subcover. Now take K; to be the union of the closures
of the neighborhoods contained in U; (which is compact as a union of finitely
many compact subsets of R), and similarly for K>. Now we can construct

cut off functions for KjandKy, i.e functions hq,he in C°(Uy), C°(Uz) that



are identically 1 in Kj, Ko respectively (This construction was shown in the
tirgul). We claim that g = ghi + gha(h1 — 1) (note that ghy € C°(Ur) and
gha(l — hy) € C(Usz)) . Indeed, for points outside of K we have 0 = 0 + 0.
For a point in K, if it’s in Kywe have ghy + gha(1 —h1) = g+ 0 =g, and if it’s
in Kowe get ghy + gho(1 — h,) = gh1 + g(1 — h1) = g . So the desired equality
holds throughout U, U U; and we are done.

3. We define a linear mapping from the space of equivalence classes of cauchy
sequences of weakly convergent smooth functions with compact support to the
space of distributions as follows: D([f4])(9) = limn—oo [ "o fu(x)g(z)dz (this
limit exists by the definition of a cauchy sequence and is well defined by the
definition of equivalence). Clearly D is a linear operator. The continuity of D
follows from the following, more general claim: the limit of a sequence of weakly
convergent distributions is itself a distribution (a sequence of distributions D,, is
called weakly convergent if D, (f) converges for any f € C°(R)). This in turn
follows from the Banach-Steinhaus theorem for Frechet spaces: a functional on
C2°(R) is continuous iff its rectriction to C°(K) is continuous for every compact
subset K C R (by definition of sequential continuity, which implies continuity
for functionals). This space is a Frechet Space and thus by Banach-Steinhaus a
pointwise limit of continuous functionals on it is continuous.

This mapping is canonical in the sense that it takes a constant sequence
fn = f to the distribution corresponding to f. It remains to be shown that this
map is an isomorphism: injectivity is clear, because by definition D([f,]) is the
zero distribution iff [f,,] = 0. We claim that given some distribution D one can
find a sequence of compactly supported smooth functions that approximates it:

First, for any n let g,, € C2°(R) be a function that is identically 1 on [—n, n].
Then clearly for any distribution D, f € C°(R), ¢,D(f) = D(gnf) = D(f) for

n sufficiently large.



Now let f, € C>(R) be an approximation to the identity (i.e for all n,
fn >0, ffooo fa(z)dz = 1 and supp(f,) shrinks to {0}). Note that for any
g € CP(R), g * fn tends to g (strongly in C°(R)). Indeed, g,g * f, are all
supported in some compact set because supp(f,) shrinks to{0} and supp(g *
fn) C supp(g) + supp(fr). Uniform convergence follows easily from the uniform
continuity of g, and uniform convergence of the derivatives then follows from
the identity (g * fn), =g * fn.

We claim that for any ditribution D, f, *D — D (note that f, x D is smooth
because its derivative equals f, % D). This is true because for any g € C°(R)

we have

D(g(=t)) = gxD(0) = limns00(g#fn)*D(0) = limn00g*(frn+D)(0) = limn o0 (fnxD)(g(—t))

where we use the associativity of convolution. Finally, we can exhibit a
sequence of functions in C'2°(R) converging (weakly) to D: the sequence g, (fy, *
D). This is true because of a combination of the above arguments: for any
h € C*(R), gn(fn* D)(h) = fn * D(h) for n sufficiently large, and this tends
to D(h).

4. (a) We need to show that supp(a, + b€2) C supp(&1) U supp(&2).If U is
open and &1, & both vanish on U, then clearly so does a&; + b&,. Therefore we
have that (supp(&1) U supp(€,))© = supp(&1)° N supp(€2)©, which is the union of
all such U, is cotained in (supp(a&; + b€2))¢, and we are done.

(b) We need to show that supp(&) Nint(supp(€)) C supp(€) C supp(€). The
second inclusion is obvious- if £ vanishes in some open set then clearly the same
holds for £ and we are done. To prove the first inclusion we use the following
lemma: let ¢ be a distribution such that flvanishes on U = (a,b) CR. Then ¢
is constant on (a,b), i.e there is some constant ¢ such that £(f) = cf; f(z)dx

for any f € C. (U).



Proof: Note that for g € C°(U), g is the derivative of a test function iff
ffg(x)dx =0 (indeed, this is equivalent to G(z) = [ g(x)dz being compactly
supported). For any such g we have £(g) = —é(G) = 0. Now fix some h €
C>(U) with f: h(x)dz = 1. Then for any f € C. (U) we have fab(f(x) —
h(z) fab ft)dt)dz = 0, so &(f) = &(h) f; f(x)dz, and ¢ = £(h) is our required
constant.

Now suppose = € supp(§) Nint(supp(€)) but also x ¢ supp(fl). Then by def-
inition §lvanishes in some neighboorhood of x,and thus by our lemma & is con-
stant there. Now this constant must be non zero, because otherwise x ¢ supp(€).
But this implies that in this neighboorhood any point is in supp(§) (because,
again, £ is a non zero constant there), so x € int(supp(§)),contradicion.

6. We need to show that the convolution of distributions with compact sup-
port is associative. So let S,T,U be distributions with compact support. To
simplify the notation, we write the variable with respect to which the distri-
bution is acting in sub-script, so for instance we write f(z) = (U * g)(z) as
Ui(g(xz —t)). Now take some function h € C°(R). Note that we have for any

two distributions with compact support
(S*T)(h) = St(Ty(h(xz + 1))

So (S«T)«U(h)=(S*T)(Uy(h(z +t)). Denote f(t) = Uy(h(z +1)).
Then (S*T)xU(h) = (SxT)(f) = S.(Tu(f(z4u)) = S (Tu(Us (h(z+2+4u)))).
Now we apply the identity (S *T)(h) = Si(T,(h(z 4+ t))) twice to obtain

Se(Tu(Us (M + 2+ w)))) = Sz (T + U)i(h(t + 2))) = (S + (T * U))(h)

so we have (S+T)xU = S (T xU) and we are done.

7. We need to show that for K C R compact, a functional £ : C°(K) — R



is continuous iff there exists some & > 0 and ¢ > 0 such that for all f € C°(K)

we have

) I<ell fllex

one direction is clear- if ¢ is bounded in the above sense then it is clearly
continuous at 0, and therefore by linearity everywhere. Conversely, suppose &
is continuous. Assume that £ isn’t bounded: this implies the existence of a

sequence f, € C°(K) such that for all n

[ E(fn) >0l S llen

by rescaling we can can assume £(f,,) = 1 for all n. This implies that

= Lo ;
1n>| f, llon= supser Y | fu (@) |2 supser | £ (2) |
i=1

for any j < n. Fixing j and letting n tend to infinity, we get that f, and
all their derivatives tend uniformly to 0, and furthermore we know that their
supports are all contained in the compact set K. So f, tend to 0 (in the strong
sense). But &(f,,) =1 for all n, contradicting the continuity of &.

8. (a) Note that away from 0, G is some solution of the homogenous differen-
tial equation A(G) = 0. Thus to specify G it suffices to describe its behaviour at
0. Write A = a,d" +a,_1d" " +...a,d° (where a,, # 0). We claim that if G is a
solution to Green’s equation it satisfies the following: G, ..., G2 are continuous
at 0, and G"~ ' is discontinuous there with lim._,o+ G"~'(e) = G" 7! (—¢) = -
The continuity condition follows from the fact that if G(“had a jump discon-

tinuity at 0 for i« < n — 2 , we would get that near 0 GO+ &y, and thus

G 6(()k), for some k > 2. Indeed, if a function f has a jump discontinuity at



x but is smooth elswhere, we have for any g € C°(R):

fg)=— / " f)g ()de = limeso— / F@)g' (y) = limeso(— [fF W) g~ [F @)g (W) 22 +

—z|>e
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But the other side of the equation contains only dg, and Jy, ...,5((Jk) are in-
dependent. Thus G, ...,G" 2 are continuous. To determine the size of the

discontinuity of G"~!, we take ¢ > 0 and integrate the equation, getting:

€ € d g d €
— — 2 (n-1) 2 (n=2)
1 /_6(5 /_6 ande (x)dw—&—/gan,l de (a:)dx—i—...—i—/ aoG(z)dx

—€

Now we take € — 0, and observe that from the continuity of G,..,G"~2, all

the terms except lim._, ffe an LG~V (z)dz vanish. So we are left with

€
d
1= lims_m/ an%G("*l)(x)dw = aplime_o(G" VY (e) — GV (—¢))

—&

and we get the size of the jump. Conversely, suppose A(G) = 0 away from 0,
and G satisfies the conditions above.

(b) Denote by Ga(x,y) the solution of A(G)(y) = 6(y — ). For some
g € CX(R), set Ag,(9)(y) = [, Galz,y)g(z)dz. We need to prove the
identity A(Ag,(g)(y)) = g(y). This follows from the properties of the green

function and the ¢ function:

A, @) =4 [ Gatpg@dr = [~ AGatgde = [ sy-og(@rts = o)



